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Abstract
The BPP model for nuclear spin relaxation is modified to account rigorously for
jumps of hydrogen within g site hexagons in the C15 AB2 structure. The theory
is applied to proton relaxation data for low H concentrations in TaV2Hx and
ZrCr2Hx . It is shown that the data are consistent with the results of quantum
diffusion calculations, diffusivity measurements and H–H interaction effects
deduced from quasielastic neutron scattering experiments.

1. Introduction

The diffusion of hydrogen in intermetallic compounds with the cubic C15 AB2 structure
has been studied by pulsed-field-gradient nuclear magnetic resonance (PFG-NMR), nuclear
spin relaxation, quasielastic neutron scattering (QENS), and anelastic relaxation (see, for
example, Skripov 2004). This range of experimental techniques is valuable in understanding
the behaviour of the H diffusion in such complicated structures where there are inequivalent
interstitial sites occupied by the H, there are multiple H jump rates, there is good evidence for
quantum diffusion, and partial ordering of H can occur. There have also been recent advances
in theoretical calculations of diffusion of H in these structures (Bhatia et al 2004, Bhatia and
Sholl 2005) and in the theory connecting the H jump rates and the diffusivity D (Sholl 2005).

The technique of nuclear spin relaxation is especially useful because it can be used to
study diffusion over a wide temperature range, results can be obtained at different resonant
frequencies, and in some cases the relaxation of metal nuclei and D can be measured in addition
to the H relaxation rates. The proton nuclear spin relaxation rates are linear combinations
of spectral density functions of the magnetic dipolar interactions between pairs of spins
undergoing relative diffusion. An approximation often used for the spectral density functions
is the Bloembergen–Purcell–Pound (BPP) model (Bloembergen et al 1948). The BPP model
leads to a Lorentzian spectral density function which has the virtues of simplicity and ease of
use. It is also often reasonably accurate for nuclear spin relaxation due to three-dimensional
diffusion in cubic crystals (Sholl 1993).
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The BPP approximation is not, however, a good approximation for describing localized
jumps which do not lead to long range diffusion. An example is H in hexagonalα-ScHx (Lichty
et al 1988). In this case the H form pairs separated by a metal atom at low temperatures and the
H undergo fast localized jumps between a pair of interstitial sites, together with a slower jump
rate away from the pair of sites. The spectral density functions in this case were calculated
by a rigorous model of jumping between the pair of sites and by combining this with the BPP
model for the slower jumps away from the pair of sites.

The H occupy interstitial g and e sites in the C15 intermetallic compounds (Skripov 2004).
The g sites form linked hexagons where the g–g distance is different for intra-hexagon jumps
to that for inter-hexagon jumps. Rapid jumps within a hexagon will therefore not lead to long
range diffusion and the BPP model could be inadequate in this case. An aim of this paper is to
develop a more accurate theory for the spectral density functions for this system. The theory
is described in the following section.

In section 3, the theory is applied to two examples where it is known that the H occupies
mainly g sites. One example is TaV2Hx for which the proton relaxation shows two well
separated maxima at different temperatures. The high temperature maximum has been
identified as being associated with the jumps between hexagons and the low temperature
maximum associated with jumps within hexagons (Skripov 2004). The other example is
ZrCr2Hx for which only a single asymmetric maximum is observed in the proton relaxation
rate. In both of these examples there are also H diffusivity data available, together with some
other information about H location and jump rates from QENS and theoretical calculations.
The aim of applying the present relaxation theory to these systems is not to find the best fit
to the relaxation data by varying a set of adjustable parameters. Rather, the aim is to assess
the accuracy of the relaxation theory by examining its consistency with data from these other
sources wherever this is possible.

2. Nuclear spin relaxation and spectral density functions

In general, H can occupy both e and g sites in C15 AB2Hx compounds. An e site has three
neighbouring g sites which are each on different hexagons. A g site has one neighbouring e
site, two neighbouring g sites on a hexagon and one neighbouring g site on an adjacent hexagon
(Eberle et al 2002). The jump rates between the sites are defined as �ge from a g site to an
e site, �eg from an e site to a g site, �1 for jumps between g sites on a hexagon, and �2 for
jumps between g sites on adjacent hexagons. Direct jumps between e sites are not considered.
The probabilities ce and cg of H at e and g sites, respectively, for the C15 structure AB2Hx are
related to the jump rates by the principle of detailed balance (Bhatia et al 2004).

The first relaxation case to be considered is unlike spin relaxation of H due to magnetic
dipolar interactions with fixed metal spins. The nuclear spin–lattice relaxation rate R1U of
diffusing spins I (protons) interacting with fixed S (metal) spins is (Abragam 1961, Bhatia
et al 2004)

R1U = 1

15
γ 2

I γ 2
S h̄2S(S + 1)

{
4ce

x
[Je(ωI − ωS) + 3Je(ωI ) + 6Je(ωI + ωS)]

+
12cg

x
[Jg(ωI − ωS) + 3Jg(ωI ) + 6Jg(ωI + ωS)]

}
(1)

where I and S are the spin quantum numbers, γI and γS are the spin gyromagnetic ratios, ωI

and ωS are the resonant frequencies of the spins and Je(ω) and Jg(ω) are spherically averaged
spectral density functions.
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The spectral density functions may be written in the form

J (ω) =
∑
α,β

P2(cos θαβ)

r3
αr3

β

P(rα, rβ, ω) (2)

where P2(z) = (3z2 −1)/2, θαβ is the angle between rα and rβ , and P(rα, rβ, ω) is the Fourier
transform

P(rα, rβ, ω) = 2 Re
∫ ∞

0
P(rα, rβ, t)eiωt dt . (3)

P(rα, rβ, t) is the probability that a pair of spins will be separated by rβ at time t if the relative
separation of the pair of spins was rα at time zero. The origin of the vectors rα is an e site for
Je(ω) and is a g site for Jg(ω), with the α sums taken over the sites of the metal spins.

The BPP approximation assumes P(rα, rβ, t) = δα,βe−�t where � is the jump rate of
H away from a site and e−�t is the probability of no jump in a time t . It assumes that the
correlation between the spins is destroyed when a jump occurs. The spectral density function
is then

JBPP(ω) = 2S1
�

�2 + ω2
(4)

where S1 = ∑
α r−6

α . This approximation will be assumed for Je(ω) with � = �e = 3�eg,
where �e is the jump rate away from an e site. The sum S1 includes all metal atom sites relative
to an e site.

The BPP approximation ignores the effect on the magnetic dipolar correlation function of
a diffusing spin remaining in the vicinity of its starting point after a jump has occurred. This
approximation is reasonable if the spin diffuses away from the site rapidly, but could be a poor
approximation for cases such as rapid diffusion around a hexagon before a jump occurs to
another hexagon or an e site. This effect could be especially significant for Jg(ω). The effect
of diffusion around hexagons can be included by treating the jumps around a hexagon exactly
and using the BPP approximation for the jumps to a different hexagon and for jumps to an e
site.

Consider a spin at a g site that has a jump rate �1 to a neighbouring site on a hexagon,
and a jump rate �2 to a neighbouring site on an adjacent hexagon. The total jump rate away
from a site is �g = 2�1 + �2 + �ge. It is assumed that there cannot be more than one spin
on each hexagon and site blocking effects on jumps are neglected because only low H spin
concentrations will be considered. Labelling the sites cyclically on the hexagon i = 1 to 6,
and assuming the spin is at site i = 1 at time zero, the probability Pi (t) of the spin being at
site i at time t is given by the equations

dP1

dt
= −�g P1 + 2�1 P2 (5)

dP2

dt
= −�g P2 + �1(P1 + P3) (6)

dP3

dt
= −�g P3 + �1(P2 + P4) (7)

dP4

dt
= −�g P4 + 2�1 P3 (8)

and where P2 = P6 and P3 = P5 by symmetry. Taking the Fourier transform (3) of these
equations and using the initial condition Pi (0) = δi1, the solutions for Pi (ω) may be written
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as

P1(ω) = 2z(z2 − 3�2
1)

z2(z2 − 3�2
1) − 2�2

1(z
2 − 2�2

1)
(9)

P2(ω) = P6(ω) = �1(z2 − 2�2
1)

z(z2 − 3�2
1)

P1(ω) (10)

P3(ω) = P5(ω) = z�1

z2 − 2�2
1

P2(ω) (11)

P4(ω) = 2�1

z
P3(ω) (12)

where z = �g − iω.
Using equation (2) the spectral density function Jg(ω) then becomes

Jg(ω) = Re
4∑

i=1

Si Pi (ω) (13)

where Si = ∑
α,β(i) P2(cos θαβ)/(rαrβ)3. The vectors rβ in these sums are rβ = rα for i = 1,

rβ includes the two nearest neighbour sites of rα on a hexagon for i = 2, rβ includes the two
second nearest neighbour sites of rα on a hexagon for i = 3, and rβ is the single third nearest
neighbour site of rα on a hexagon for i = 4.

A special case of this theory that is of interest is when �ge = 0 and �1 � �2, corresponding
to much faster jumps within a hexagon than for jumps between hexagons. In this case the theory
gives two well separated maxima in the relaxation rates at high and low temperatures as for
the experimental data for TaV2Hx (Skripov 2004). This can be seen as follows. In the limit
�1 → ∞ all of the Pi(ω) in equations (9)–(12) become identical and Jg(ω) becomes

Jhigh(ω) =
∑4

i=1 Si

3

�2

�2
2 + ω2

. (14)

This is of the BPP form in equation (3), but with a different proportionality factor. The
consequent relaxation rates depend only on the slower jump rate �2 and are relevant to the
relaxation in the vicinity of the high temperature maximum in TaV2Hx .

The limit �2 → 0 gives Jlow(ω) which depends only on the faster jump rate �1 and is not
of BPP form. These spectral density functions give the form of the low temperature maximum
in the relaxation rates. The functions ωPi (ω) as a function of ω/�1 are shown in this limit in
figure 1. The spectral density function in this limit depends on the crystal structure through
the summations Si in equation (13). An example of a comparison between ωJlow(ω) and the
BPP result is shown in figure 2 for the values of Si for H–V interactions given in table 1. The
BPP result is also shown shifted to fit the position and magnitude of the maximum of ωJlow(ω)

to enable a comparison of the shapes of the maxima. It can be seen that the BPP peak is
narrower, is larger and has its maximum at different ω/�1 to the function describing diffusion
on a localized hexagon. The asymptotic slopes of the BPP curves are the same as ωJlow(ω) in
both the low and high ω/�1 limits.

The above theory of the spectral density functions can also be adapted to the case of like
spin relaxation of H due to magnetic dipolar interactions between pairs of diffusing H. The
relaxation rate R1L of the H is then (Abragam 1961, Bhatia et al 2004)

R1L = 1

5
γ 4

I h̄2 I (I + 1)

{
4ce

x
[Jeg(ωI ) + 4Jeg(2ωI )]

12cg

x
[Jgg(ωI ) + 4Jgg(2ωI ) + Jge(ωI ) + 4Jge(2ωI )]

}
(15)
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Figure 1. The real part of the functions ωPi (ω) as a function of ω/�1 in the limit �2 → 0, and
the corresponding BPP function.

Table 1. Values of the lattice sums Si in units of a−6. The sums for e–g interactions are three
times the values for g–e interactions.

S1 S2 S3 S4

TaV2Hx g-Ta 7.57 × 103 9.39 × 103 527 −835
TaV2Hx g-V 1.11 × 104 1.27 × 104 6.44 × 103 3.02 × 103

ZrCr2Hx No restriction
g–g 2.07 × 105 1.79 × 105 157 −3.27 × 104

g–e 9.42 × 104 8.17 × 104 8.81 × 103 2.06 × 103

ZrCr2Hx rmin = 2.1 Å
g–g 1.19 × 104 3.10 × 104 1.95 × 104 7.84 × 103

g–e 4.05 × 103 9.86 × 103 6.06 × 103 2.40 × 103

ZrCr2Hx rmin = 2.0 Å
g–g 1.66 × 104 3.86 × 104 1.83 × 104 7.84 × 103

g–e 5.83 × 104 1.46 × 104 7.97 × 103 3.16 × 103

where the spectral density functions are the following. Jgg(ω) is for the case of both spins
initially on g sites. It is of the same form as Jg(ω) but has each of the jump rates in it doubled
to account for either of the pair of spins undergoing jumps, the sums Si are for interactions
between pairs of g sites and a multiplicative factor of cg is included to account for the probability
of a spin at site rα. Jeg(ω) is for the case of one spin at an e site at the origin and the other
spin at a g site with probability cg. It is also of the form of Jg(ω) but with �g replaced by
�g + �eg, the sums Si are for interactions between e and g sites and a multiplicative factor of
cg is included. The spectral density function Jge(ω) has e and g interchanged in Jeg(ω).

The above theory has neglected site-blocking effects on H jumps so is valid at low H
concentrations. The unlike spin relaxation theory is applied to TaV2Hx and the like spin
relaxation theory is applied to ZrCr2Hx in the following sections.

3. Nuclear spin relaxation in TaV2Hx

The proton relaxation rate in TaV2Hx has been measured as a function of temperature for a range
of H concentration x and frequency (Buzlukov and Skripov 2004). Only the low concentration
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Figure 2. The function ωJlow(ω) as a function of ω/�1 in the limit �2 → 0 for the values of Si
for H–V interactions (solid curve). The corresponding BPP function is shown as the dashed curve,
together with this curve translated to fit the position and magnitude of the maximum of the solid
curve (BPP-F).

data for x = 0.10 will be considered here since interaction and correlation effects should be
less at low concentrations. The proton relaxation data as a function of temperature show a high
temperature maximum at 400 K and another smaller maximum at 40 K for each resonance
frequency (23, 40 and 90 MHz). The low temperature maxima have been attributed to rapid
jumps �1 between g sites within hexagons and the high temperature maxima attributed to
slower �2 jumps between g sites between adjacent hexagons.

The relaxation of protons in TaV2Hx is dominated by the dipolar interactions between
metal nuclei and protons, rather than the interactions between pairs of H. The relaxation rate
is therefore given by equation (1). Interactions of H with both the Ta nuclei and the V nuclei
have been included in the calculations. The values of lattice sums Si for g sites are given in the
table in the following section, taking the positional parameters for the g sites to be X = 0.055
and Z = 0.888 (Fischer et al 1997). The lattice parameter is 7.166 Å (Buzlukov and Skripov
2004). It is assumed that only the g sites are occupied by H.

Since the relaxation maxima are well separated, the high temperature data can be analysed
using the spectral density function Jhigh(ω) given by equation (14). If �1 � �2 the values of
�2 in the high temperature region can be deduced from the proton diffusivity D measured by
PFG-NMR in TaV2H1.24 (Majer et al 1995) between 334 and 484 K. The diffusivity shows
approximate Arrhenius form with a prefactor of 27.5 × 10−9 m2 s−1 and an activation energy
of 0.267 eV in this temperature range. In the low concentration limit the diffusivity is related
to the jump rates by Sholl (2005)

D = a2

48

1

�−1
1 + �−1

2

(16)

so that �2 = 48D/a2 if �1 � �2 and neglecting a small correlation effect for D at x = 1.24.
These values of �2 and Jhigh(ω) were used to calculate the high temperature relaxation rates
with two adjustable parameters. A multiplicative parameter p was used to fit the value of the
maximum, and the jump rate �2 was scaled by a factor A to fit the temperature at which the
maximum occurs for the 23 MHz data.

The results of the fit to the experimental data (Buzlukov and Skripov 2004), after
subtracting the electronic contribution to the relaxation rate, are shown in figure 3. The
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Figure 3. Proton relaxation rates R1 in TaV2H0.1. Symbols are experimental data. The continuous
lines are the calculated values for the temperature range 334–484 K. The dashed lines are the results
assuming Arrhenius form of the diffusion data at lower temperatures.

calculations have assumed Arrhenius form for D and �2, with the range of temperature
corresponding to the PFG-NMR data shown as continuous curves and the extrapolated
region shown as dashed curves. The agreement with the experimental data is excellent at
high temperatures and the calculated values are lower than the experimental values at lower
temperatures.

The value of p to fit the value of the maxima is 0.7. Analysis of QENS data for TaV2Hx for
x = 0.6 and 1.1 suggested that H–H interactions lead to the formation of some ordered
configurations at low temperatures and that this can lead to ‘static’ protons that do not participate
in the fast localized motion (Skripov et al 1998) and would not contribute to the relaxation. If
the fraction of such ‘static’ protons is 1 − p the effect on the relaxation rate is a multiplicative
factor of p, as assumed in the above fitting procedure, if the proton magnetization is rapidly
equalized by spin diffusion. The QENS study enabled estimates of the temperature dependence
of p in the range 80–300 K. The value of p at 300 K is 0.6 and increases with temperature.
This is in excellent agreement with the value of 0.7 obtained from the fit to the relaxation
maximum at 344 K.

The value of the parameter A to fit the position of the 23 MHz maximum is 0.47. Without
this adjustment the calculated relaxation maxima occur at values of 1000/T which are too
large. This is typical of the behaviour for the BPP model, which is used here for the �2 jumps.
Accurate calculations of the spectral density functions for like-spin interactions and diffusion
in cubic crystals show that the maxima of the relaxation rates occur at ω/� = 0.383 (SC),
0.443 (BCC) and 0.474 (FCC) (Barton and Sholl 1980), compared with the BPP result of 0.62.
The corresponding ratios to compare with A are therefore 0.62 (SC), 0.71 (BCC) and 0.76
(FCC), which decrease with coordination number of the structure. Diffusion away from a site
will occur more rapidly for higher coordination numbers and so the BPP approximation will
be better in such cases. The reason that the BPP model overestimates the jump rates is that
it overestimates the rate at which the correlation function decays by assuming the correlation
function becomes zero when a jump of a spin occurs. The decay is actually slower because
spins in reality take a sequence of jumps to diffuse away which will reduce the rate of decay
of the correlation function. While the above results for like-spin interactions are not directly
comparable to the case of unlike-spin interactions for TaV2H0.1, the same effect of the BPP
approximation overestimating the jump rates would be expected.
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The calculated relaxation rates are lower than the experimental values on the low
temperature side of the maximum in figure 3. The value of p also decreases with decreasing
temperature so that this effect would reduce the calculated rate even further. A possible reason
for this discrepancy is that the Arrhenius form of �2 is not valid in this region. Analysis of the
ultrasonic attenuation data in TaV2Hx (Foster et al 2001) suggested that the H jump rate for
low H concentrations shows an upward curvature on an Arrhenius plot for 1000/T greater than
∼4 due to quantum diffusion. There is also a slight possible upward curvature of the diffusion
data (Majer et al 1995) for 1000/T ∼ 3. An increase in the H jump rate from Arrhenius form
would increase the calculated relaxation rates on the low temperature side of the maximum.

The other relaxation rate maxima (not shown) that occur at lower temperatures show
appreciable asymmetry. As noted by Buzlukov and Skripov (2004) this asymmetry is
inconsistent with a BPP model and Arrhenius temperature dependence of a jump rate. Buzlukov
and Skripov proposed that the asymmetry was due to a non-Arrhenius jump rate arising from
quantum diffusion behaviour of �1 and deduced the temperature dependence of �1 by fitting
the experimental data. The present modification of the BPP model would use the spectral
density function (13) to fit the low temperature relaxation data. This has not been calculated
because no independent estimate of the jump rates is available in this temperature region. One
feature of the low temperature maxima that can be used to check the validity of the present
theory is the value of the maximum rate as this is independent of the temperature dependence of
the jump rate. Only the 90 MHz data will be considered as the data for the other frequencies is
probably influenced by cross-relaxation effects (Buzlukov and Skripov 2004). Comparing the
experimental maximum rate at T = 50 K with the value calculated using the spectral density
function (13) gives a value of p = 0.06 for the two to agree. This is consistent with p ∼ 0.08
at 50 K obtained by extrapolating the p(T ) data obtained from the QENS data (Skripov et al
1998).

4. Nuclear spin relaxation in ZrCr2Hx

The diffusion of H in ZrCr2Hx has been studied by a range of methods. Proton spin relaxation
data is available for x = 0.2 and 0.5 for resonant frequencies of 11, 19.3 and 90 MHz (Skripov
and Belyaev 1993). The diffusivity of H has been measured by PFG-NMR for x = 0.2 and
0.5 (Renz et al 1994) and QENS data has been obtained for x = 0.45 (Skripov et al 1999). In
addition, theoretical calculations of the jump rates of H in the low concentration limit using
plane wave density functional theory have been made by Bhatia and Sholl (2005). These
calculations used semiclassically corrected transition state theory to estimate contributions
from tunnelling to each jump rate.

The spin relaxation data as a function of temperature shows a single asymmetric maximum
at each frequency. This data can be fitted well by a BPP model with a Gaussian distribution
of activation energies, but the parameters obtained from the fit are unsatisfactory (Skripov and
Belyaev 1993).

The spin relaxation in this case is due to like-spin magnetic dipolar interactions between
diffusing H since the metal nuclei with non-zero spin have low abundance. The relaxation
rates R1 are therefore given by equation (15). Values of the H jump rates and diffusivity have
been calculated by Bhatia and Sholl (2005). The calculated jump rates for �eg, �ge, �1 and �2

are shown as a function of temperature in figure 4. Also shown are the corresponding values
of the diffusivity and the experimental results from the PFG-NMR measurements (Renz et al
1994). The curvature in the Arrhenius plots is a consequence of quantum diffusion effects
(Bhatia and Sholl 2005). The agreement between the theoretical and experimental D values is
excellent except for a scaling factor. The proton spin relaxation rates are therefore calculated
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Figure 4. The calculated jump rates for H diffusion in ZrCr2Hx (broken curves and right-hand
scale). Also shown are the theoretical diffusivity Dth and the experimental diffusivity Dexp
(continuous curves and left-hand scale.)

using scaled values of the jump rates. The scaling factor for the jump rates is a multiplicative
temperature-dependent factor applied to all the jump rates that gives agreement between the
theoretical and experimental values of D. The scaling factor at lower temperatures than those
at which D was measured are assumed to be the same as the factor at 1000/T = 7.6.

H in ZrCr2Hx occupies mainly g sites with positional parameters X = 0.066 and
Z = 0.872 (Skripov et al 1999). The occupation probabilities of the e and g sites can be
deduced from the calculated values of �eg/�ge. The results are consistent with mainly g
site occupation with, for example, ce/cg = 0.013 at 1000/T = 10 and ce/cg = 0.043 at
1000/T = 4. The effect of the small e site occupancy has been included in the relaxation rate
calculations for completeness. The lattice sums Si for the dipolar interactions are given in the
table. The lattice parameter is a = 7.26 Å (Skripov et al 1999). The values of the sums for
H–H interactions are quite sensitive to the value of the minimum H–H separation. According
to the Westlake criteron (see, for example, Flanagan and Oates 1988) the minimum separation
of H in metals is ∼2.1 Å. Results are given in the table for summations over all g sites (no
restriction) and for minimum H–H separations of 2.0 and 2.1 Å. The sensitivity of the values
of the sums to the distance of closest approach of pairs of H implies that small changes in
the structural parameters or local changes in the environment of H–H pairs could change the
values of the sums significantly.

The calculated relaxation rates for H in ZrCr2H0.2 for 11 and 19.3 MHz are compared
with the experimental data in figure 5. The theoretical results shown have used the lattice sums
corresponding to a minimum H separation of 2.0 Å, have been scaled by a factor p = 0.74 to
fit the maximum experimental rate of 2.49 s−1 for the 19.3 MHz data, and the jump rates have
been scaled by a factor of 0.5 to shift the curves to fit the position of the experimental maxima.
The general behaviour of broad asymmetric maxima is well described by the calculations. The
asymmetry in the maxima is related to the non-Arrhenius behaviour of the diffusivity, which
is a consequence of the quantum diffusion effects at low temperatures shown by Bhatia and
Sholl (2005).

The phenomenon of a fraction 1 − p of ‘static’ H described for TaV2Hx in the previous
section has also been observed for ZrCr2Hx (Skripov et al 1999) by QENS. The value of p
deduced from the QENS study was p ∼ 0.6 at T ∼ 160 K. While this is reasonably consistent
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Figure 5. Proton relaxation rates R1 in ZrCr2H0.2. Symbols are experimental data and the lines
are the calculated values.

with the value of 0.74 deduced from the fit of the relaxation data, the uncertainties in the values
of the sums Si are significant. For example, using the set of sums with rmin = 2.1 Å results in
a value of p ∼ 1. The calculated relaxation rates are too small at high temperatures and too
large at low temperatures. This behaviour is consistent with a temperature dependent fraction
p that decreases with temperature.

The scaling of the jump rates by a factor of 0.5 to fit the position of the maxima in the
relaxation rates is similar to the factor of 0.47 used for the case of TaV2Hx . This effect is again
likely to be a consequence of the use of the BPP approximation for H jumps other than those
within hexagons. The general features of the relaxation rates are therefore well described by
the theory.

5. Conclusions

The BPP model for nuclear spin relaxation for diffusion between e and g sites has been modified
to include an accurate description of jumps between g sites within hexagons. This enables
more accurate analysis of experimental relaxation rates for interstitial diffusion in the C15 AB2

structure, especially for cases where there are rapid jumps within hexagons. The analysis could
also be extended to other systems such as the C14 structure. The BPP model is still used in
the present theory for jumps between hexagons and jumps including e sites. One consequence
of this approximation is that jump rates deduced from fitting relaxation data will be too large
by typically a factor of two.

The analysis of the proton relaxation data for TaV2H0.1 and ZrCr2H0.2 has shown that
the relaxation rates are consistent with low temperature quantum diffusion, the existence of
a temperature-dependent fraction of ‘static’ protons, and H interaction effects that prevent
H approaching each other too closely. The effect and details of these phenomena cannot be
deduced solely by the use of nuclear spin relaxation data. However, the combination of the
relaxation data with information from diffusivity measurements,QENS analysis and theoretical
calculations can reveal considerable detail about the microscopic nature of H diffusion. The
examples considered in this paper show that these different approaches can yield consistent
results.
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